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Abstract: In this paper, I will examine the solution to the wave equation in 3 dimensions and 
justify the method of separation of variables through which I arrived at the solution. A 3-
dimensional wave equation is of applied significance in describing wavelike phenomena; common 
examples can include atmospheric waves, electromagnetic waves, and gravitational waves 

1. Introduction 
The 3-dimensional (3D) wave equation transpires to be a linear, homogeneous partial differential 

equation (PDE) [1,2]. By considering arrays of sequenced oscillators, or otherwise, one obtains the 
general structure of the 3 -dimensional wave equation. Solutions of wave equations are of evident 
significance, for they provide a theoretical insight on understanding the behaviours of travelling 
waves in specific mediums [3] . Some of the wave equations can be solved analytically by 
separation of variables [4]. Other approaches to obtain the analytical solution include the method of 
integral transform [2] (i.e., the Laplace transform and/or the Fourier transform), both of which 
reflect a genuine sense of ingeniousness in reductionism and analytic philosophy. Routines of 
solving the wave equations numerically in the finite-difference approach are also widely 
investigated, where the degree of accuracy and analytical predictions of grid dispersion effect are 
examined [5] . 

The research on the analytical and numerical solutions to the wave equations has been applied 
interdisciplinarily, into fields of engineering, physics and geology science, to name a few. Through 
examining the wave equation, seismic illumination analysis provides a novel and flexible approach 
in tackling complex wave models with nontrivial acquisition and target geometry [6] Innovative 
and convenient methods are developed in electronics, optics and acoustics [7,8,9]. Not confined to 
its engineering values, the solutions of the wave equations can contribute as a pedagogical tool. 
Topics like light propagation and basic quantum mechanics can be explained by solving the wave 
equations as a solid mathematical foundation[10]. The strategy adopted in this paper involves less 
complicated technique which makes it more conceptually comprehensible and academically 
accessible by many, but yields at the same time fruitful and valid results which may be used for 
specific purposes. Such elegant simplicity appreciated by many is, logically speaking, an inevitable 
concomitant of the underlying principles and fundamental guidelines of separation of variables - 
divide and rule. 

In this letter, we solve the 3D linear wave equation in a Cartesian coordinate system and apply 
the analysis to an electromagnetic wave propagation problem. The key aim of this paper is to reflect 
properties through rigorous derivation alone, from which we further extrapolate known identities to 
inspect the validity of the presented solution. 

2. Theory 

The 3-dimensional wave equation 𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) can be generalised as follows 

∂2𝑈𝑈
∂𝑡𝑡2

= 𝛼𝛼2∇2𝑈𝑈,  (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3, 𝑡𝑡 > 0, (1) 
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where the scalar quantity 𝛼𝛼  indicates the speed with which the wave is propagating and ∇2 
represents the Laplace operator 

∇2𝑈𝑈 =
∂2𝑈𝑈
∂2𝑥𝑥

+
∂2𝑈𝑈
∂2𝑦𝑦

+
∂2𝑈𝑈
∂2𝑧𝑧

. (2) 

2.1 Separation of Variables in Cartesian Coordinates 
Now, in order to perform separation of variables on equation (1), postulate the function 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) can be expressed in the form of a product of several single-variable function. To be 
more specific, postulate 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑋𝑋(𝑥𝑥)𝑌𝑌(𝑦𝑦)𝑍𝑍(𝑧𝑧)𝑇𝑇(𝑡𝑡). (3) 
By performing substitution back into equation (1), it follows immediately that 

1
𝛼𝛼2

𝑋𝑋𝑌𝑌𝑍𝑍𝑇𝑇′′ = 𝑋𝑋′′𝑌𝑌𝑍𝑍𝑇𝑇 + 𝑋𝑋𝑌𝑌′′𝑍𝑍𝑇𝑇 + 𝑋𝑋𝑌𝑌𝑍𝑍′′𝑇𝑇, (4) 

where the double primes indicate the ordinary second-order derivative of the single-variable 
functions. The primary advantage that arises subsequently is that the equation (1), which involves 
partial derivatives, has been suppressed deliberately into one which only consists of multiple single 
variable derivatives, drastically reducing the complexity and hence enabling one to adopt strategies 
frequently deployed in tackling ordinary differential equations. Notice that by the assumption of 3 
dimensions 

𝑋𝑋(𝑥𝑥)𝑌𝑌(𝑦𝑦)𝑍𝑍(𝑧𝑧)𝑇𝑇(𝑡𝑡) ≠ 0. (5) 

Therefore, diving both sides of equation (4) by 𝑋𝑋(𝑥𝑥)𝑌𝑌(𝑦𝑦)𝑍𝑍(𝑧𝑧)𝑇𝑇(𝑡𝑡) gives 

1
𝛼𝛼2

𝑇𝑇′′

𝑇𝑇
=
𝑋𝑋′′

𝑋𝑋
+
𝑌𝑌′′

𝑌𝑌
+
𝑍𝑍′′

𝑍𝑍
. (6) 

Examining functions on both sides of equation (6), one notices that the left-hand side is 
dependent on the variable 𝑡𝑡 and the 𝑡𝑡 only, whereas the right-hand side does not. Instead, the right-
hand side is related to the variables 𝑥𝑥,𝑦𝑦, and 𝑧𝑧. Nevertheless, equation (6) still holds. Hence, and for 
the sake of clarity and convenience, one concludes that 

1
𝛼𝛼2

𝑇𝑇′′

𝑇𝑇
= −𝜆𝜆42,

𝑋𝑋′′

𝑋𝑋
= −𝜆𝜆12,

𝑌𝑌′′

𝑌𝑌
= −𝜆𝜆22,

𝑍𝑍′′

𝑍𝑍
= −𝜆𝜆32, (7) 

where 𝜆𝜆𝑖𝑖 ,  𝑖𝑖 = 1,2,3,4, are the separation constants. Equation (7) have the general solutions 

𝑋𝑋(𝑥𝑥)  = 𝐴𝐴1𝑒𝑒𝑖𝑖𝜆𝜆1𝑥𝑥 + 𝐵𝐵1𝑒𝑒−𝑖𝑖𝜆𝜆1𝑥𝑥,
𝑌𝑌(𝑦𝑦)  = 𝐴𝐴2𝑒𝑒𝑖𝑖𝜆𝜆2𝑦𝑦 + 𝐵𝐵2𝑒𝑒−𝑖𝑖𝜆𝜆2𝑦𝑦,
𝑍𝑍(𝑧𝑧)  = 𝐴𝐴3𝑒𝑒𝑖𝑖𝜆𝜆3𝑧𝑧 + 𝐵𝐵3𝑒𝑒−𝑖𝑖𝜆𝜆3𝑧𝑧,
𝑇𝑇(𝑡𝑡)  = 𝐴𝐴4𝑒𝑒𝑖𝑖𝑖𝑖𝜆𝜆4𝑡𝑡 + 𝐵𝐵4𝑒𝑒−𝑖𝑖𝑖𝑖𝜆𝜆4𝑡𝑡 ,

(8) 

where 𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 ,  𝑖𝑖 = 1,2,3,4, are the constants determined by the boundary conditions and initial 
conditions and the separation constants are restricted by the relation: 

𝜆𝜆42 = 𝜆𝜆12 + 𝜆𝜆22 + 𝜆𝜆32. (9) 

Consider the Dirichlet boundary conditions 

𝑋𝑋(0) = 0 = 𝑋𝑋(𝐿𝐿𝑥𝑥),𝑌𝑌(0) = 0 = 𝑌𝑌�𝐿𝐿𝑦𝑦�,𝑍𝑍(0) = 0 = 𝑍𝑍(𝐿𝐿𝑧𝑧), (10) 

the spatial separation constants 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3  can be computed by substituting equation (8) into 
equation (10), and with some simple arithmetic, one gets 

𝜆𝜆1 =
𝑛𝑛𝑥𝑥𝜋𝜋
𝐿𝐿𝑥𝑥

, 𝜆𝜆2 =
𝑛𝑛𝑦𝑦𝜋𝜋
𝐿𝐿𝑦𝑦

, 𝜆𝜆3 =
𝑛𝑛𝑧𝑧𝜋𝜋
𝐿𝐿𝑧𝑧

,  𝑛𝑛𝑥𝑥,𝑦𝑦,𝑧𝑧 = 1,2,3,⋯ , (11) 
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The solution to the original wave equation is the superposition of the separated solutions, and the 
constants of the spatial part can be absorbed into the time-dependent part, 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = �  
+∞

𝑛𝑛𝑥𝑥=1,𝑛𝑛𝑦𝑦=1,𝑛𝑛𝑧𝑧=1
si n �

𝑛𝑛𝑥𝑥𝜋𝜋𝑥𝑥
𝐿𝐿𝑥𝑥

� si n�
𝑛𝑛𝑦𝑦𝜋𝜋𝑦𝑦
𝐿𝐿𝑦𝑦

� si n �
𝑛𝑛𝑧𝑧𝜋𝜋𝑧𝑧
𝐿𝐿𝑧𝑧

� (𝑇𝑇𝑛𝑛�⃗ co s(𝜙𝜙𝑛𝑛�⃗ 𝑡𝑡) + 𝑅𝑅𝑛𝑛�⃗ si n(𝜙𝜙𝑛𝑛�⃗ 𝑡𝑡)) , (12) 

where 

𝑛𝑛�⃗ = �𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧�,𝜙𝜙𝑛𝑛�⃗
2 = 𝛼𝛼2 ��

𝑛𝑛𝑥𝑥𝜋𝜋
𝐿𝐿𝑥𝑥

�
2

+ �
𝑛𝑛𝑦𝑦𝜋𝜋
𝐿𝐿𝑦𝑦

�
2

+ �
𝑛𝑛𝑧𝑧𝜋𝜋
𝐿𝐿𝑧𝑧

�
2
� . (13) 

Now, introduce initial conditions 

𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 0),
∂𝑈𝑈
∂𝑡𝑡
�
𝑡𝑡=0

, (14) 

to illustrate the starting shape and speed of the wave, respectively. Immediately, one could get 
with some tedious calculations the exact values of 𝑇𝑇𝑛𝑛�⃗  and 𝑅𝑅𝑛𝑛�⃗  through 

𝑇𝑇𝑛𝑛�⃗ =
8

𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧
�  
𝐿𝐿𝑥𝑥

0
 �  

𝐿𝐿𝑦𝑦

0
 �  

𝐿𝐿𝑧𝑧

0
 𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 0) sin �

𝑛𝑛𝑥𝑥𝜋𝜋𝑥𝑥
𝐿𝐿𝑥𝑥

� sin�
𝑛𝑛𝑦𝑦𝜋𝜋𝑦𝑦
𝐿𝐿𝑦𝑦

� sin �
𝑛𝑛𝑧𝑧𝜋𝜋𝑧𝑧
𝐿𝐿𝑧𝑧

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 , (15) 

𝑅𝑅𝑛𝑛�⃗ =
8

𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧𝜙𝜙𝑛𝑛�⃗
�  
𝐿𝐿𝑥𝑥

0
 �  

𝐿𝐿𝑦𝑦

0
 �  

𝐿𝐿𝑧𝑧

0
 
∂𝑈𝑈
∂𝑡𝑡
�
𝑡𝑡=0

sin �
𝑛𝑛𝑥𝑥𝜋𝜋𝑥𝑥
𝐿𝐿𝑥𝑥

� sin�
𝑛𝑛𝑦𝑦𝜋𝜋𝑦𝑦
𝐿𝐿𝑦𝑦

� sin �
𝑛𝑛𝑧𝑧𝜋𝜋𝑧𝑧
𝐿𝐿𝑧𝑧

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 . (16) 

3. Solving Electromagnetic Waves in Linear Dielectric Media 

Consider a Cartesian coordinate system, the dielectric constant 𝜀𝜀(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is distributed as: 

𝜀𝜀(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝜀𝜀1 𝑥𝑥 > 0,
𝜀𝜀0 𝑥𝑥 ≤ 0 (17) 

The permeability is approximately homogeneous over the space, 

𝜇𝜇(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜇𝜇0. (18) 
The free space Maxwell's equations are 

∇ ⋅ E(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)  = 0,
∇ ⋅ B(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)  = 0,

∇ × E(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = −
∂
∂𝑡𝑡

B(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡),

∇ ⋅ B(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝜇𝜇0𝜀𝜀(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
∂
∂𝑡𝑡

E(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡),

(19) 

where ∇= ∂
∂𝑥𝑥

e𝑥𝑥 + ∂
∂𝑦𝑦

e𝑦𝑦 + ∂
∂𝑧𝑧

e𝑧𝑧 is the differential operator and vector functions E(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) and 
B(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)  are the electric and magnetic field. The free space Maxwell's equations give the 
electromagnetic wave equations 

∇2E0  = 𝜇𝜇0𝜀𝜀0
∂2E0
∂𝑡𝑡2

,  𝑥𝑥 ≤ 0,

∇2E1  = 𝜇𝜇0𝜀𝜀1
∂2E1
∂𝑡𝑡2

,  𝑥𝑥 > 0,

∇2B0  = 𝜇𝜇0𝜀𝜀0
∂2B0

∂𝑡𝑡2
,  𝑥𝑥 ≤ 0,

∇2B1  = 𝜇𝜇0𝜀𝜀1
∂2B1
∂𝑡𝑡2

,  𝑥𝑥 > 0,

(20) 
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The boundary condition at 𝑥𝑥 = 0 is 
𝜀𝜀1𝐸𝐸1𝑥𝑥(0+, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝜀𝜀0𝐸𝐸0𝑥𝑥(0,𝑦𝑦, 𝑧𝑧, 𝑡𝑡),

𝐸𝐸1𝑦𝑦(0+,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)e𝑦𝑦 + 𝐸𝐸1𝑧𝑧(0+, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)e𝑧𝑧  = 𝐸𝐸0𝑦𝑦(0+, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)e𝑦𝑦 + 𝐸𝐸0𝑧𝑧(0+,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)e𝑧𝑧,
B1(0+, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = B0(0,𝑦𝑦, 𝑧𝑧, 𝑡𝑡).

(21) 

The general form of solution equation (12) can be written as the superposition of a series of 
monochromatic plane waves (for simplicity, only the Electric field is discussed below, the 
derivation for the Magnetic solution is similar) 

E(r, 𝑡𝑡) = � 
𝑛𝑛

Ẽ𝑛𝑛𝑒𝑒𝑖𝑖(k𝑛𝑛⋅r−𝜔𝜔𝑛𝑛𝑡𝑡), (22) 

where Ẽ𝑛𝑛 is the constant amplitude, k𝑖𝑖 is the wave vector, r = 𝑥𝑥e𝑥𝑥 + 𝑦𝑦e𝑦𝑦 + 𝑧𝑧e𝑧𝑧 is the position 
vector, and 𝜔𝜔 is the frequency which is related to the wave vector by 

𝜔𝜔𝑖𝑖 =
1

�𝜇𝜇0𝜀𝜀
𝑘𝑘𝑖𝑖 . (23) 

Without loss of generality, we consider a monochromatic plane wave 𝒲𝒲  (with Ẽ𝐼𝐼 , k𝐼𝐼 ,𝜔𝜔  ) 
propagating from 𝜀𝜀0 region to 𝜀𝜀1 region. At the boundary 𝑥𝑥 = 0, part of 𝒲𝒲�Ẽ𝑅𝑅 , k𝑅𝑅 ,𝜔𝜔� is reflected, 
while the other part transmits �Ẽ𝑇𝑇, k𝑇𝑇,𝜔𝜔�, which means the solution to equation (20) is 

E0 = Ẽ𝐼𝐼𝑒𝑒𝑖𝑖(k𝐼𝐼⋅r−𝜔𝜔𝑡𝑡) + Ẽ𝑅𝑅𝑒𝑒𝑖𝑖(k𝑅𝑅⋅r−𝜔𝜔𝑡𝑡),
E1 = Ẽ𝑇𝑇𝑒𝑒𝑖𝑖(k𝑇𝑇⋅r−𝜔𝜔𝑡𝑡).

(24) 

The frequency fulfils 

𝜔𝜔 =
1

�𝜇𝜇0𝜀𝜀0
𝑘𝑘𝐼𝐼 =

1
�𝜇𝜇0𝜀𝜀0

𝑘𝑘𝑅𝑅 =
1

�𝜇𝜇0𝜀𝜀1
𝑘𝑘𝑇𝑇 . (25) 

The boundary condition equation (21) requires 

k𝐼𝐼 ⋅ r|𝑥𝑥=0 = k𝑅𝑅 ⋅ r|𝑥𝑥=0 = k𝑇𝑇 ⋅ r|𝑥𝑥=0. (26) 

This means (with setting the coordinates such that k𝐼𝐼 is in the 𝑥𝑥𝑧𝑧 plane) 
k𝐼𝐼 ⋅ e𝑧𝑧  = k𝑅𝑅 ⋅ e𝑧𝑧 = k𝑇𝑇 ⋅ e𝑧𝑧,

k𝑅𝑅 ⋅ e𝑦𝑦  = k𝑇𝑇 ⋅ e𝑦𝑦 = 0, (27) 

so k𝑅𝑅  and k𝑇𝑇  are also in the 𝑥𝑥𝑧𝑧 plane. By defining the angle between k𝐼𝐼 , k𝑅𝑅, k𝑇𝑇  and 𝑥𝑥 axis as 
𝜃𝜃𝐼𝐼 ,𝜃𝜃𝑅𝑅,𝜃𝜃𝑇𝑇, respectively, we reformulate the boundary condition as 

𝑘𝑘𝐼𝐼 = 𝑘𝑘𝑅𝑅  =
1

�𝜖𝜖1/𝜖𝜖0
𝑘𝑘𝑇𝑇,

𝑘𝑘𝐼𝐼si n𝜃𝜃𝐼𝐼 = 𝑘𝑘𝑅𝑅si n𝜃𝜃𝑅𝑅 = 𝑘𝑘𝑇𝑇si n𝜃𝜃𝑇𝑇 ,
𝜀𝜀0�−�̃�𝐸𝐼𝐼si n𝜃𝜃𝐼𝐼 + �̃�𝐸𝑅𝑅si n𝜃𝜃𝑅𝑅� = −𝜀𝜀1�̃�𝐸𝑇𝑇si n𝜃𝜃𝑇𝑇 ,

�̃�𝐸𝐼𝐼co s 𝜃𝜃𝐼𝐼 + �̃�𝐸𝑅𝑅co s𝜃𝜃𝑅𝑅 = �̃�𝐸𝑇𝑇co s𝜃𝜃𝑇𝑇 ,

(28) 

from which we obtain the reflection and refraction laws of light. 

4. Discussion 
The entire solution discussed above relies on the prerequisite condition that the function 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) can be written in the form of 𝑋𝑋(𝑥𝑥)𝑌𝑌(𝑦𝑦)𝑍𝑍(𝑧𝑧)𝑇𝑇(𝑡𝑡), which was previously assumed to be 
true in this paper. This particular claim is regarded as justifiable for two reasons. One, the supposed 
form, when substituted back into equation (1), results in a meaningful, valid solution. Two, it can be 
verified strictly that the function 𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) does meet the Dirichle conditions and thus can be 
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expanded as a Fourier series, which arises precisely in the assumed form. Hence, the method of 
separation of variables itself is justified. 

5. Conclusion 
In conclusion, by separating variables where appropriate, we have obtained the solution to the 

generalised wave equation and applied it to the analysis of electromagnetic waves in linear 
Dielectric media. Specific rules that govern the behaviour of light (e.g., the laws of reflection and 
refraction), which are merely perceived by many as patterns or properties from observation, are also 
established strictly from mathematical derivation. While the method of separation of variables 
proves to be effective in some circumstances, it shall be made abundantly clear that to fully 
understand the implications of waves in specific mediums with more complex and less ideal 
conditions, in reality, novel approaches that provide access to reduced complexity could be 
investigated. 
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